
Escludendo gli errori grossolani, derivanti, ad esempio, da 
macroscopiche sviste nell’applicazione della procedura o da un problema 
strumentale improvviso, gli errori che caratterizzano una misura 
sperimentale possono essere distinti in:

Errori casuali (random)

 derivano dalla naturale variabilità nell’esito di una misura, legata 
all’operatore, alla strumentazione e/o alla metodologia impiegata;

 influenzano la precisione di una misura, ossia la dispersione dei dati 
intorno al loro valore medio;

 non sono eliminabili ma possono essere ridotti;

 la loro entità può essere espressa mediante la deviazione standard.

Classificazione degli errori 



Errori sistematici

 derivano da scostamenti costanti delle misure dal valore vero, dovuti 
all’operatore, alla strumentazione e/o alla metodologia impiegata;

 influenzano l’accuratezza della misura, ossia la differenza fra il 
valore misurato ed il valore vero;

 sono potenzialmente eliminabili, anche completamente, se 
riconosciuti; 

 sono quantificabili dalla differenza fra il valore misurato ed il valore 
vero (ad esempio analizzando un campione certificato).



Media

Date n misure sperimentali replicate (ad esempio i volumi equivalenti 
determinati da n titolazioni indipendenti), x1, x2, …xn, la media dei loro 
valori si definisce come:

Mediana
Date n misure sperimentali replicate, con n dispari, la mediana è il valore 
che si trova a metà della serie compresa fra il valore più piccolo e quello 
più grande determinati: 

10.10, 10.20, 10.40, 10.46, 10.50, 10.54, 10.60, 10.80, 10.90

Se n è un numero pari, la mediana è la media della coppia di valori centrali:

10.10, 10.20, 10.40, 10.46, 10.50, 10.54, 10.60, 10.80, 10.90, 11.02
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Deviazione standard

Misura la dispersione dei valori misurati intorno al valore medio, dovuta alla 
presenza di errori random.
Date n misure sperimentali replicate, x1, x2, …xn, la deviazione standard si 
definisce come:

Si utilizzano talvolta anche grandezze correlate alla deviazione standard:

la deviazione standard relativa:  

la deviazione standard relativa percentuale: RSD% = RSD × 100   e

la varianza campionaria: V = s2
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Ripetibilità e riproducibilità

Entrambi i termini indicano quanto i valori ottenuti per una misura siano 
dispersi intorno al loro valore medio, tuttavia, secondo le direttive ISO 
(International Standard Organization):

 la ripetibilità corrisponde alla dispersione dei dati relativi ad uno stesso 
campione ottenuti nelle stesse condizioni (operatore, apparato 
strumentale, laboratorio) e in un breve lasso di tempo (ad esempio nel 
corso della stessa giornata);

 la riproducibilità corrisponde alla dispersione dei dati relativi allo stesso 
campione ma ottenuti da diversi laboratori oppure nello stesso laboratorio 
ma da diversi operatori o con apparati diversi o in tempi diversi (ad 
esempio in giorni diversi).

In generale la ripetibilità è migliore (ossia inferiore) della riproducibilità 
perché quest’ultima è influenzata, almeno potenzialmente, da un numero 
maggiore di fonti di variabilità rispetto alla ripetibilità.



I contributi all’errore complessivo su una misura

Supponendo di conoscere il valore vero della grandezza da misurare, 
detto T (True), l’errore complessivo associato alla generica 
determinazione xi di quella grandezza si può esprimere come:

Ei = xi – T

Sommando e sottraendo il valor medio delle determinazioni l’errore si 
può esprimere anche come:

Ei = (xi -   ) + (   - T)

il primo termine, (xi -  ), rappresenta il contributo dovuto all’errore 
casuale

il secondo termine, (  -T), rappresenta il contributo dovuto all’errore 
sistematico (bias o distorsione)

L’errore sistematico può avere a sua volta diversi contributi, che 
possono essere valutati mediante test intra-laboratorio e inter-
laboratorio, analizzando un campione a concentrazione nota (il valore T).
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Ripartizione degli errori sistematici

In un singolo laboratorio

L’errore sistematico associato alla misura di un campione certificato in un 
singolo laboratorio comprende:

 l’errore sistematico dovuto al metodo di analisi (method bias), ad esempio 
l’incompleta formazione di un complesso di cui si misura poi l’assorbanza, 
laddove si supponga, su base teorica, che la sua formazione sia completa

 l’errore sistematico dovuto al laboratorio (laboratory bias), ad esempio un 
problema strumentale che porta a sottostimare l’assorbanza

errore sistematico intra-laboratorio = 
method bias + laboratory bias



Confronto fra laboratori diversi

Quando un campione di concentrazione nota (campione certificato) viene 
analizzato da diversi laboratori con la medesima procedura (inter-laboratory 
test) è possibile separare il method bias dal laboratory bias.

Purché il numero di laboratori che partecipano al test sia sufficientemente 
elevato, è altamente probabile che i laboratory bias siano distribuiti in modo 
casuale, ossia che i loro valori positivi o negativi siano più o meno equivalenti, 
dunque che il loro valore medio sia prossimo a 0. 

In una situazione di questo tipo l’eventuale persistenza di un errore 
sistematico indica la presenza di un method bias.

errore sistematico inter-laboratorio = method bias



Numero di cifre significative in una misura

Un dato sperimentale ha significato solo se accompagnato da una stima 
dell’errore associato alla misura con cui è stato determinato.

L’errore casuale può essere determinato, nell’approccio più semplice, 
effettuando un numero n di replicati della stessa misura e calcolando la 
deviazione standard secondo la formula abituale.

Quando non viene esplicitamente riportata l’incertezza, si può dedurre 
SOLTANTO quale/i cifra/e sia/siano affetta/e da incertezza, purché sia 
stata rispettata la convenzione delle cifre significative. Una di esse si 
esprime nel modo seguente:
le cifre significative di una misura sono tutte quelle note con certezza più la 
prima affetta da incertezza (ed anche la seconda, se la prima cifra affetta da 
incertezza è affetta da un errore pari ad 1). 

Esempio

Il dato 153.7, così riportato, presuppone che la cifra 7 sia la prima affetta da 
incertezza (e che dalla cifra 3 verso sinistra non ci sia incertezza). Ad 
esempio l’errore sulla misura potrebbe essere 0.4.
Le cifre significative del dato sono dunque, per definizione, quattro.



Il ruolo della cifra 0 nell’espressione di una misura

• Lo zero che precede il punto decimale non è MAI una cifra significativa
 (ad esempio nel dato 0.715 le cifre significative sono 3)

• Lo zero compreso fra cifre significative è SEMPRE una cifra 
significativa (ad esempio nel dato 7.015 le cifre significative sono 4)

• Lo zero che segue delle cifre significative PUO’ essere una cifra 
significativa. In particolare lo è sempre se segue il punto decimale (ad 
esempio nel dato espresso come 2.0)

Per evitare equivoci, specialmente nel caso di valori molto elevati, può 
essere utile impiegare la notazione scientifica, nella quale le cifre 
significative sono SOLTANTO quelle che precedono la potenza di 10.

Ad esempio il dato 1357000, così espresso, implica che l’ultima cifra 
significativa sia lo zero nella posizione delle unità. In notazione 
scientifica il numero andrebbe dunque scritto come 1.357000 × 106.

Se però i tre zeri finali non fossero significativi, insistendo l’errore già 
sulla cifra delle migliaia (7), il numero andrebbe scritto come 1.357 × 106.



Arrotondamento delle cifre associate ad una misura a partire dalle cifre 
significative associate all’errore che è stato determinato per essa

La procedura di arrotondamento di una misura dovrebbe prevedere i 
seguenti passaggi, in rigoroso ordine cronologico:

1)  Calcolare l’errore random (come semplice deviazione standard o con 
calcoli più complessi, che verranno illustrati in seguito)

2’) Conservare, del dato numerico relativo all’errore, soltanto una cifra 
significativa, se essa è maggiore di 1, e procedere all’arrotondamento 
secondo la regola abituale (arrotondamento verso l’alto se la cifra che 
la segue è ≥ 5 e verso il basso se essa è ≤ 4):

 Ad esempio: 
 
 se l’errore è risultato pari a 0.7862348 si conserverà soltanto il 7 

che segue lo 0 (lo 0 posto davanti agli altri numeri non è significativo) 
ma arrotondato verso l’alto perché il 7 è seguito da un 8: 0.8;

 
 se l’errore è risultato pari a 0.7342348 si conserverà soltanto il 7 ma 

non modificato, perché il 7 è seguito da un 3: 0.7.



se l’errore è risultato pari a 7.862348 si conserverà soltanto 8
 
 se l’errore è risultato pari a 7.342348 si conserverà soltanto 7

2’’) Conservare, del dato numerico relativo all’errore, la prima cifra 
significativa e quella subito successiva, se la prima cifra risulta 
uguale ad 1. Per l’arrotondamento della seconda cifra significativa si 
procede come illustrato al punto 2’

 Ad esempio: 
 
 se l’errore è risultato pari a 0.1862348 si conserverà 0.19
 
 se l’errore è risultato pari a 0.1342348 si conserverà 0.13

 se l’errore è risultato pari a 1.862348 si conserverà 1.9
 
 se l’errore è risultato pari a 1.342348 si conserverà 1.3



3) Arrotondare il valore della misura (media) in modo che sia COERENTE, 
in termini di cifre, con le cifre significative presenti nel suo errore

 Ad esempio, per una misura pari a 9.21567:

 se l’errore è risultato pari a 2.67821, ossia 3, arrotondato alla prima 
cifra significativa (l’unica considerabile in questo caso, secondo la 
convenzione adottata), la misura dovrà essere espressa come 9 ± 3;

se l’errore è risultato pari a 2.17821, ossia 2, arrotondato, la misura dovrà 
essere espressa come 9 ± 2;

se l’errore è risultato pari a 0.267821, ossia 0.3, la misura dovrà essere 
espressa come 9.2 ± 0.3;

se l’errore è risultato pari a 0.167821, ossia 0.17, arrotondato, la misura 
dovrà essere espressa come 9.22 ± 0.17

se l’errore è risultato pari a 0.163821, ossia 0.16, la misura dovrà essere 
espressa come 9.22 ± 0.16

La coerenza fra misura ed errore implica che la misura sia
arrotondata su una posizione identica a quella su cui è stato in
precedenza arrotondato l’errore.



Arrotondamento delle cifre associate ad una misura quando l’errore 
corrispondente ha la sua prima cifra significativa su una posizione molto lontana 
dall’unità

Se l’errore risulta avere la sua prima cifra significativa su una posizione distante 
dall’unità (ad esempio sulle migliaia, sui millesimi, ecc.) occorre fare molta 
attenzione negli arrotondamenti, soprattutto quando l’entità della misura è 
molto diversa da quella dell’errore.

Ad esempio:

se l’errore è risultato pari a 0.0034782, il suo arrotondamento sarà 0.003, 
quindi si avranno i seguenti arrotondamenti:

1.90843219  1.908 ± 0.003

0.01908432  0.019 ± 0.003

290838.983265  290838.983 ± 0.003

0.00067356  0.001 ± 0.003, più facilmente esprimibile come (1 ± 3) × 10-3

0.000067356  0.000 ± 0.003, più facilmente esprimibile come (0 ± 3) × 10-3



La notazione scientifica diventa fondamentale quando errore e misura hanno 
entrambi valori molto superiori all’unità.

Ad esempio:

190843219 ± 238981 va arrotondato come: (1908 ± 2) × 105

190843219 ± 138981 va arrotondato come: (1908.4 ± 1.4) × 105

Particolare attenzione va prestata alla situazione, non rara in chimica 
analitica, in cui errore e misura siano sì entrambi superiori all’unità ma, in 
aggiunta, l’errore è superiore, anche di molto, rispetto alla misura:

1908341 ± 2389819  (2 ± 2) × 106

1908341 ± 23898191  (0.19 ± 2.39) × 107  (0 ± 2) × 107

7908341 ± 13898191  (0.79 ± 1.39) × 107  (0.8 ± 1.4) × 107

7908341 ± 138981911  (0.079 ± 1.390) × 108  (0.1 ± 1.4) × 108



Nel caso della lettura 
mostrata in figura, basata 
su una normale scala 
lineare (relativa alla 
trasmittanza percentuale, 
in questo caso), 
l’operatore è in grado di 
apprezzare certamente il 
valore 58 ma, di fatto, 
anche di stimare la 
corrispondente prima 
cifra decimale, che, a 
seconda di chi legge, 
potrà essere apprezzata 
come 1, 2 o 3, 
ragionevolmente.

La misura potrà essere dunque fornita come 58.1, 58.2 o 58.3 % e ciò implicherà 
che l’ultima cifra a destra, la prima decimale, sia affetta da un errore dell’ordine di 
1, massimo 2 unità, realisticamente, quindi sarà espressa, ad es., come 58.2 ± 0.2 %.

Arrotondamento nel caso della lettura derivante dalla posizione di una lancetta 
rispetto ad una scala graduata
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Nel caso della lettura di 
assorbanza mostrata in 
figura, basata su una 
scala logaritmica, 
l’operatore è in grado di 
apprezzare certamente 
non solo il valore 0.23 
ma, di fatto, anche la 
successiva cifra 
decimale, che sarà 
assegnata come 2, 3 o 4, 
a seconda di come viene 
stimata da chi effettua 
la lettura (si noti che 
fra 0.2 e 0.3 la scala è 
quasi lineare).

La misura potrà essere dunque fornita come 0.232, 0.233 o 0.234 e ciò 
implicherà che l’ultima cifra a destra, la terza decimale, sia affetta da un errore 
ragionevolmente pari a 1-2 unità, quindi, ad esempio, 0.233 ± 0.002. 
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In generale, quindi, si accetta che per un dato derivante dalla lettura di una 
scala graduata l’operatore possa attribuire come ultima cifra significativa 
un multiplo della quantità pari ad un decimo della più piccola spaziatura della 
scala. Nella valutazione più pessimistica il multiplo in questione sarà 5.

L’incertezza legata alla lettura contribuisce alla variabilità osservata sulla 
quantità misurata quando si replica più volte la misura.

Nel caso specifico va considerato con attenzione il fatto che la suddivisione 
della scala logaritmica diventi sempre più irregolare via via che il valore di 
assorbanza aumenta:

Fra le tacche 0.7 e 1.0 le 
spaziature interne corrispondono 
a 0.05 unità di assorbanza, 
invece che 0.01, e questo, 
associato alla non linearità delle 
spaziature, può portare a 
maggiore imprecisione, pertanto 
è consigliabile leggere la 
trasmittanza percentuale, per 
poi trasformarla in trasmittanza 
e, infine, in assorbanza.0.6
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Propagazione dell’errore

Quando una grandezza viene determinata combinando i valori di altre 
grandezze determinate sperimentalmente l’errore ad essa associato si può 
calcolare a partire da quelli che caratterizzano le varie grandezze misurate

Errori casuali

Se la grandezza da determinare y è una funzione di n grandezze, x1, x2, …, 
xn, sperimentalmente determinate ed indipendenti, l’errore casuale 
(deviazione standard) ad essa associato sy è dato dalla relazione:

dove sxi è la deviazione standard associata alla grandezza xi.

Se nel calcolo delle derivate parziali occorre introdurre uno o più valori per 
le grandezze xi, si utilizzano i valori medi ottenuti per queste.
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Errori sistematici

L’errore sistematico su una grandezza y determinata a partire dalle 
grandezze misurate x1, x2, …, xn, fra loro independenti, è dato 
dall’equazione:

dove ∆xi sono i vari errori sistematici, considerati con il proprio segno.

A differenza dell’errore casuale l’errore sistematico finale può essere 
anche nullo, se i termini di segno positivo e negativo dell’espressione sopra 
indicata si compensano vicendevolmente.
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Variabili random discrete e continue

Una variabile si definisce random se ad ogni suo valore può essere associata 
una certa probabilità.

In particolare una variabile random è:

discreta, se può assumere soltanto i valori di un sottoinsieme del campo 
reale, ad esempio soltanto numeri interi (come il numero delle particelle 
emesse da una sorgente radioattiva);

continua, se può assumere, potenzialmente, tutti i valori del campo reale (o 
quantomeno, quelli positivi, nel caso di molte grandezze fisiche), ad esempio 
la concentrazione, la temperatura, il volume, ecc.



Distribuzioni di frequenze

La probabilità che una variabile random assuma un certo valore può essere 
visualizzata attraverso la sua distribuzione di frequenza, che va costruita a 
partire da valori determinati sperimentalmente per quella variabile random. Se 
la variabile rappresenta il valore misurato in seguito ad un esperimento si 
procederà come segue:

 i dati ottenuti da n repliche dell’esperimento (dati grezzi/raw data) 
vengono prima ordinati in modo crescente o decrescente, costruendo una 
serie, caratterizzata da un campo di variazione, ossia la differenza fra il 
valore massimo e quello minimo;

 si individuano delle classi in cui raggruppare i dati, ossia intervalli di 
ampiezza costante che coprono l’intero campo di variazione;

 per ogni classe si individua una frequenza assoluta, corrispondente al 
numero di dati che ricadono al suo interno;

 la distribuzione di frequenza può essere visualizzata con un’istogramma, 
un grafico costituito da rettangoli che hanno la base centrata sul valore 
centrale della classe e di lunghezza pari all’ampiezza della classe, mentre 
l’altezza corrisponde alla frequenza della classe (assoluta o anche relativa).



Le frequenze di ogni classe 
possono essere espresse anche in 
termini relativi (ossia dividendo il 
numero di dati facenti parte 
della classe per quello totale), 
come mostrato in figura.

Il poligono di frequenza è la linea 
spezzata che collega i punti medi 
delle basi superiori di ogni 
rettangolo dell’istogramma.

Esempio: istogramma delle frequenze per una serie di 65 dati corrispondenti 
al contenuto percentuale di nichel in una lega, misurato con arrotondamento 
alla prima cifra decimale.



Distribuzioni di frequenze cumulative: ogive

Data una certa classe della serie di dati, la somma delle frequenze di 
tutte le classi che la precedono e della frequenza della classe stessa 
si definisce frequenza cumulativa della classe.

Il poligono delle frequenze cumulative viene anche definito ogiva:



Se si immaginasse di aumentare notevolmente il numero dei dati raccolti e 
visualizzati in un istogramma di frequenze sarebbe possibile scegliere classi 
di ampiezza sempre più piccola e trovare comunque un certo numero di 
osservazioni comprese in ciascuna di esse.

L’istogramma delle frequenze diventerebbe costituito da rettangoli di base 
sempre più stretta ed il relativo poligono di frequenze una spezzata 
costituita da segmenti sempre più piccoli.

Densita’ e distribuzione di probabilita’ 

Per un numero infinito di replicati il poligono delle frequenze relative 
diventerebbe una curva; essa rappresenta la funzione densità di probabilita’ 
f(x).

La funzione derivante dal poligono delle frequenze cumulative, in presenza di 
un numero infinito di replicati, rappresenta invece la distribuzione di 
probabilità F(x).



E’ interessante notare che f(x) = dF(x)/dx  e 

f(x) F(x)

∫
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Funzioni di densità di probabilità: tipi più comuni

L’aggettivo modale deriva dal termine moda, che rappresenta il valore che si 
presenta con la più alta frequenza in una serie di dati, ossia il valore piu’ 
comune.
Un esempio molto comune di funzione di densità di probabilità per dati 
sperimentali è la curva gaussiana o normale, che è una funzione simmetrica.



Nel caso di una funzione simmetrica media, mediana e moda coincidono, 
mentre in presenza di asimmetria la media è l’indice che risente 
maggiormente della distorsione, allontanandosi da moda e mediana:



Data una variabile random x, caratterizzata da una funzione di 
distribuzione di probabilita’ f(x), la speranza matematica (o valore 
atteso) E di una generica funzione g della variabile random x è espressa 
dalla relazione:

E{g(x)} = 

 Quando la funzione g(x) è del tipo xr, la funzione E si definisce  
momento non centrale di ordine r della variabile x.

Per r = 1 si ottiene:

E{x} =                      = µ

µ si definisce media di popolazione della variabile x

La funzione Speranza matematica (Expectation)

∫
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∞−
xf(x)dx

∫
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g(x)f(x)dx



 Quando la funzione g(x) è del tipo (x-µ)r, la funzione E si definisce  
momento centrale di ordine r della variabile x.

Per r = 2 si ottiene:

E{(x-µ)2} = V(x) =                         = σ2

σ2 e’ la varianza di popolazione della variabile x

∫
∞+

∞−
f(x)dx)-(x 2µ



Differenza fra campione e popolazione in statistica

In statistica:
un campione di dimensioni n è un numero finito n di osservazioni ottenute 
per una variabile random;

la popolazione relativa alla stessa variabile random è rappresentata dal 
numero infinito di osservazioni che in teoria potrebbero essere 
effettuate su quella variabile.

L’introduzione della funzione E consente di stabilire un confronto fra 
media e varianza campionarie e i relativi parametri di popolazione:

media varianza

campione (dim. n)

popolazione µ = σ2 =
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E’ possibile applicare alla media e alla varianza di un campione di dimensioni 
n, dette appunto media e varianza campionarie, la funzione E, tenendo 
conto di alcune sue proprietà generali, ossia:

E(a) = a       se a è una costante;

E(ax + b) = aE(x) + b,  se a e b sono costanti e x è una variabile random

E(x1 + x2 + …+ xn) = E(x1) + E(x2) + …E(xn), 

dove x1, x2, … , xn sono valori della variabile random ottenuti dalla stessa 
popolazione.



Il valore atteso per la media campionaria è dunque dato da:

E(  ) = E(          ) =                                                           µ

Nel caso della varianza campionaria si ottiene:

E(s2) =
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Va sottolineato che poiché le varie xi rappresentano, in questo caso, valori 
derivanti dalla stessa popolazione, quella della variabile x, si può scrivere, 
per ciascuna xi, che E(xi

2) = E(x2), quindi la sommatoria delle E(xi
2) 

corrisponde a n E(x2).



Le due speranze matematiche indicate in parentesi quadra sono correlate 
alle varianze associate alla variabile x stessa e alla variabile rappresentata 
dalla sua media campionaria, infatti risulta:

22222222 μ2μ)E(xμμE(x) 2)E(x)μ 2xμE(x μ)E(xV(x) +−=+−=+−=−=
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Sostituendo nell’ultima espressione ottenuta per la E(s2) si ottiene quindi:
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D’altro canto, considerando la definizione di media campionaria e le 
seguenti proprietà generali della varianza: 

V(ax + b) = a2V(x)     e     V(x + y) = V(x) + V(y)

la seconda delle quali valida per x e y variabili random indipendenti,
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si può scrivere: 

e, in definitiva: 

Si noti che l’uguaglianza finale vale soltanto in virtù della presenza del 
termine n-1 al denominatore dell’espressione della varianza campionaria.

Tale termine viene definito correzione di Bessel.



In termini statistici si dice che:

 la variabile      (media campionaria) rappresenta uno stimatore corretto 
(unbiased) della media di popolazione µ;

 la variabile s2 (varianza campionaria) rappresenta uno stimatore 
corretto (unbiased) della varianza di popolazione σ2.

x



Distribuzione campionaria della media

E’ possibile applicare la funzione V definita in precedenza, ossia il 
momento centrale di ordine 2, alla media campionaria.

Ricordando le seguenti proprieta’ della funzione V:

V(ax + b) = a2V(x)           e

V(x + y) = V(x) + V(y)  se x e y sono variabili random indipendenti

si ottiene:
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In definitiva:

se più serie di misure, ciascuna costituita da n replicati, vengono 
effettuate sulla stessa popolazione e si calcolano le corrispondenti 
medie, i valori di queste ultime hanno essi stessi una distribuzione che è 
centrata sul valore della media di popolazione µ ed ha una varianza σ2/n, 
ossia una deviazione standard σ/n1/2.

Tale distribuzione prende il nome di distribuzione della media 
campionaria.



Covarianza e coefficiente di correlazione

Covarianza

Quando si considerano due variabili random, x e y, le cui popolazioni siano 
caratterizzate dalle medie µx e µy, è possibile definire la funzione 
covarianza usando la speranza matematica:

C(x, y) = E{(x- µx) (y- µy)}  

Dalla definizione si deduce che la varianza è la covarianza di una variabile 
random con se stessa.

La covarianza fra due variabili X e Y può essere calcolata a partire da N 
determinazioni delle due variabili, impiegando la formula:
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Coefficiente di correlazione

Fornisce una misura di quanto due variabili siano correlate fra di loro e si 
definisce come:

r(x,y) = 

Il valore massimo che r puo’ assumere è 1 (perfetta correlazione), mentre 
il valore minimo è –1 (perfetta anti-correlazione).

V(y)} {V(x)
y)C(x,

La covarianza può essere utilizzata per calcolare in forma più generale la 
varianza di una grandezza f che sia funzione di m variabili random:
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Si noti che nel caso in cui la covarianza fra tutte le possibili coppie di 
variabili sia nulla la formula diventa analoga a quella già considerata per la 
propagazione dell’errore random.
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