
Determinazione di un segnale analitico in presenza di 
rumore distribuito in modo gaussiano

Ipotizzando che il responso y di un metodo analitico sia correlato 
linearmente alla concentrazione c, per una generica misura del responso si 
può scrivere la relazione:

y = β0 + β1 c + ε

dove ε è l’errore random associato alla misura.

Nell’ipotesi che la deviazione standard dei dati non sia dipendente dalla 
concentrazione e che l’errore sia distribuito in modo gaussiano, si ha: 

ε ∼ N(0, σy),   e quindi si può scrivere anche:

y ∼ N(β0 + β1 c, σy)

In definitiva, i valori del segnale Y ottenuti alle varie concentrazioni sono 
distribuiti in modo gaussiano intorno ad un valore che dipende linearmente 
dalla concentrazione (β0 + β1 c) ed è caratterizzato da una deviazione 
standard pari a σy.



Quando si considera una soluzione in tutto simile a quelle standard 
impiegate per realizzare la retta di calibrazione “Y contro c” ma priva 
dell’analita (c = 0), ossia la soluzione di bianco, il segnale registrato sarà:

y = β0 + ε = y0

Dunque anche il valore del segnale associato alla soluzione di bianco avrà 
una sua distribuzione.

Nella terminologia della chimica analitica strumentale la grandezza ε viene 
definita “rumore”, ad indicare la variabilità del segnale che uno strumento 
fornisce anche in assenza di analita in grado di generarlo (quindi quello 
correlato al solvente puro o alla matrice priva dell’analita di interesse).



Indicando con p0(y) la funzione 
densita’ di probabilita’ relativa 
ai valori del segnale del bianco 
e con pi(y) quelle dei segnali 
corrispondenti alle varie 
concentrazioni ci, si puo’ usare 
una rappresentazione tri-
dimensionale per visualizzare la 
situazione piu’ generale (ossia 
quella in cui β0 ≠ 0):

Se si guardasse la figura da 
sinistra a destra, in direzione 
perpendicolare all’asse che 
rappresenta il segnale y, si 
osserverebbe questa immagine:
più elevata è la concentrazione ci,  
minore è la sovrapposizione fra le 
curve di densità di probabilità 
p0(y) e pi(y).
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La decisione sull’attribuzione di un segnale all’analita o al bianco sulla base 
delle rispettive densità di probabilità è una procedura analoga al 
confronto fra due medie:

Soglia di decisione e rapporto segnale/rumore

Anche in questo caso si deve definire un valore critico del segnale, 
definito soglia di decisione, yk, che suddivide l’intervallo dei valori di y in 
due regioni:
 
R0 è la regione in cui il segnale si ritiene derivante solo dal bianco (y ≤ yk)
R1 è la regione in cui si può ritenere il segnale derivante dall’analita (y > yk) 

bianco analita



Detta σy la deviazione standard caratteristica delle due distribuzioni, 
supposta uguale per entrambe, si definisce rapporto segnale/rumore la 
quantità:

r(S/N) = (yi-y0)/σy

Tale rapporto, a parità di rumore, sarà tanto più elevato quanto maggiore 
sarà la concentrazione ci, e quindi il segnale yi.

Le probabilità corrispondenti alle diverse decisioni possibili possono essere 
calcolate mediante opportuni integrali delle due funzioni densità di 
probabilità disponibili.

Si usa il seguente simbolismo per indicare le diverse probabilità:

(Pxy)z        dove:

x = 0/1 rappresenta l’affermazione che l’analita non sia/sia presente;
y = 0/1 indica che realmente l’analita non sia/sia presente;
z = 0/i indica che si usa la funzione p0(y) o pi(y) rispettivamente.



(P00)0: probabilità di affermare che l’analita sia assente quando ciò è vero
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(P10)0: probabilità di affermare che l’analita sia presente quando ciò NON 
è vero (ossia il segnale deriva comunque dal bianco)
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(P01)i: probabilità di affermare che l’analita NON sia presente quando 
invece lo è
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(P11)i: probabilità di affermare che l’analita sia presente quando ciò è vero
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Criterio di Neyman-Pearson per la soglia di decisione

Il criterio di Neyman-Pearson consiste nel determinare la soglia di 
decisione in base alla probabilità di falsa rivelazione, ossia la probabilità 
di stabilire che l’analita sia presente quando ciò non è vero, 
corrispondente alla grandezza (P10)0.

Poiché si è supposto che le funzioni di densità di probabilità p(y) siano 
gaussiane, la funzione p0(y) avrà la forma:
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Se si introduce la variabile normale standardizzata z = (y-y0)/σy si può 
scrivere:
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dove zk = (yk-y0)/σy rappresenta il valore standardizzato corrispondente 
alla soglia di decisione ed è, di fatto, l’incognita dell’equazione ora 
scritta, in quanto l’integrale, se sviluppato, è funzione di zk.

Per valori di (P10)0 via via più piccoli zk aumenta e, automaticamente, 
anche yk aumenta, dunque si sposta verso destra nel seguente grafico:

(P10)0



Fissato un valore per la probabilità (P10)0 si determina automaticamente il valore 
di soglia standardizzato zk e la corrispondente soglia di decisione: 
yk = y0 + zk σy

La regola su cui si basa la decisione è dunque:

 se y ≤ y0 + zk σy  si stabilisce che l’analita non è presente nel campione;

 se y > y0 + zk σy  si stabilisce che l’analita è presente nel campione.

Se si replicano N misure sul campione sottoposto al test le condizioni del 
criterio di Neyman-Pearson diventano:

se ≤ y0 + zk σy/         ⇒ l’ipotesi che l’analita sia assente può essere accettata

se    > y0 + zk σy/         ⇒ l’ipotesi che l’analita sia presente può essere accettata

Il criterio tiene conto dunque della media dei valori ottenuti dalle N misure del 
segnale sul campione sottoposto al test.
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Calcolo della soglia di decisione

Supponiamo di voler stabilire la soglia di decisione yk corrispondente ad 
una probabilità di falsa rivelazione dell’1%, ossia a (P10)0 = 0.01.

Tale probabilità corrisponde a considerare sulla curva di densità di 
probabilità normale standardizzata un valore di z corrispondente ad 
un’area sottesa pari al 99%, ossia z = 2.33.

Essendo zk = 2.33 la soglia di decisione, in termini di yk, sarà:

yk = y0 + 2.33 σy

pertanto la regola di decisione sarà:

se: y ≤ y0 + 2.33 σy  l’analita è assente

se: y > y0 + 2.33 σy   l’analita è presente



Nel caso di N misure replicate la soglia di decisione sarà invece:

yk = y0 + 2.33 σy/

e quindi la regola di decisione sarà:

se      ≤ y0 + 2.33 σy/      l’analita è assente

se      > y0 + 2.33 σy/       l’analita è presente
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Limite di rivelabilità in chimica analitica 

Per limite di rivelabilità (LOD) in chimica analitica si intende:

“la minima concentrazione di analita che può essere rivelata ad un certo 
livello di fiducia (o ad un certo rapporto segnale/rumore, S/N) con un 
particolare metodo analitico strumentale”. 

Questo parametro, fondamentale per valutare quanto sia sensibile un 
metodo analitico, è strettamente legato alla soglia di decisione, quindi 
presuppone una determinazione su base statistica.

Criterio di Kaiser per il limite di rivelabilità

Il criterio di Kaiser stabilisce che il limite di rivelabilità sia dato dalla 
concentrazione di analita a cui corrisponde un segnale pari a:

y = y0 + 3 σy

dove y0 è il valore medio del segnale ottenuto dal bianco mentre σy è la 
deviazione standard di tale segnale. 



La curva riportata in figura rappresenta la congiunzione dei punti 
corrispondenti a centinaia di valori di responsi del bianco misurati nel 
tempo ed è di fatto una rappresentazione del rumore associato alla 
misura.

Il criterio di Kaiser equivale a considerare per la soglia di decisione un 
valore zk = 3, ossia fissare una probabilità di falsa rivelazione (P10)0 = 
0.0013 (0.13 %).



Dal valore di y così stabilito si ricava poi il corrispondente valore di 
concentrazione c, ossia il LOD associato ad un rapporto S/N = 3.

Il criterio di Kaiser non si preoccupa della probabilità di affermare che non ci 
sia analita nel campione quando invece esso è presente, (P01)c.

Tuttavia, se si fissa a 3σy la differenza fra y e y0 tale probabilità può essere 
pari anche al 50 %, quindi molto elevata, come evidenziato dal seguente 
grafico: 



Si può dimostrare che soltanto se la differenza fra y e y0 fosse pari a 6 
σy, mantenendo la soglia di decisione a 3 σy, tale probabilità sarebbe 
praticamente trascurabile:

In queste condizioni il valore di c sarebbe la minima concentrazione di 
analita rivelabile con buona precisione da una singola misura.

Talvolta si usa proprio tale valore, ossia il LOD a S/N = 6, come limite di 
rivelabilità di un metodo analitico strumentale, tuttavia il criterio di 
Kaiser resta il più diffuso nella definizione del valore del LOD.



Relazione fra limite di rivelabilità e rapporto 
segnale/rumore

A prescindere dal valore numerico di zk adottato per il limite di 
rivelabilità, si può notare che esso corrisponde alla quantità:

(y-y0)/σy

che, per definizione, rappresenta il rapporto segnale/rumore (S/N) in 
corrispondenza del segnale y.

Nell’ipotesi che il segnale y dipenda linearmente dalla concentrazione si 
può scrivere:

y = y0 + b1c ossia y = y0 + b1 c

dove b1 è la pendenza della retta che rappresenta la dipendenza del 
segnale dalla concentrazione.



Detto r(S/N) il rapporto segnale su rumore in corrispondenza del segnale 
y, si può ricavare la relazione:

c = r(S/N) σy / b1

Fissato un certo rapporto segnale/rumore il limite di rivelabilità sarà 
tanto più basso (e quindi migliore):

 quanto maggiore è la pendenza b1, ossia la sensibilità del metodo

 quanto più precisa è la misura di y, ossia quanto minore è σy.

Il limite di rivelabilità, c, sarà dato dunque da:

c = (y-y0)/b1



Stima del limite di rivelabilità direttamente 
dal rapporto segnale/rumore

La  relazione:

c = r(S/N) σy / b1

si puo’ sfruttare per una determinazione del limite di rivelabilita’ a 
partire da una misura diretta del rapporto segnale/rumore. Le diverse 
fasi della procedura sono:

1) Determinazione di r(S/N)  a diverse concentrazioni c dell’analita

La determinazione prevede:

 la misura del segnale del bianco su un certo numero di replicati, con 
valutazione della sua deviazione standard, che rappresenta il rumore;

 la misura del segnale analitico in una serie di soluzioni standard 
dell’analita effettuando piu’ replicati per ciascuna soluzione;



2) Interpolazione dei dati di 
r(S/N) in funzione di c con il 
metodo dei minimi quadrati.

I dati di r(S/N) ottenuti in 
funzione di c vengono trattati 
con la regressione lineare 
convenzionale o pesata, a 
seconda dei casi.

 il calcolo del valore medio e della deviazione standard di r(S/N) alle 
varie concentrazioni.

3) Determinazione del limite di rivelabilita’

Il LOD si ricava scegliendo il valore di r(S/N) che si desidera adottare, 
ad esempio 3, e ricavando il corrispondente valore di c dalla retta di 
regressione (esattamente come si fa per una concentrazione a partire 
dal segnale).

conc.

r(S/N)

c0

3

(y-y0)/σy



Stima del limite di rivelabilità dalla regressione lineare

Siano date n coppie di valori (ci, yi), che rappresentano il set di dati 
ottenuto per effettuare la calibrazione di un metodo analitico.

Le ipotesi fondamentali per la stima del limite di rivelabilità a partire dalla 
regressione lineare sono:

 le concentrazioni ci si possono ritenere affette da un’incertezza 
trascurabile;

 i segnali yi sono affetti da un’incertezza distribuita in modo gaussiano.



Procedura

Si valuta inizialmente il valore del
segnale, y, a cui corrisponde il 
rapporto segnale/rumore, r(S/N), 
prescelto per il limite di 
rivelabilità, tipicamente 3. 

Essendo:

(y –y0)/σy = r(S/N)

risulta:

y = y0 + r(S/N) σy

segnale

concentrazione

y = y0 + b1 c
r(S/N) σy

y

y0

c0

Se l’equazione della retta di regressione è y = y0 + b1c, si ricava facilmente 
che il limite di rivelabilita’ e’ dato da:

c = (y- y0)/b1 = r(S/N) σy/ b1



In generale si adotta il criterio di Kaiser, per cui: r(S/N) = 3, mentre al 
posto di σy si possono usare:

 il valore della deviazione standard sui residui della regressione lineare:

oppure:

 il valore della deviazione standard sull’intercetta, che nella nuova 
notazione è:
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Dalle equazioni riportate si deduce che il valore indicato per il limite di 
rivelabilita’ dipende:

 dal rapporto segnale/rumore scelto (a sua volta legato alla 
probabilità di falsa rivelazione adottata)

 dallo stimatore adottato per σy, ossia sy/x o sy0
, che a loro volta 

cambieranno a seconda che si usi una regressione lineare 
convenzionale o pesata.



Un esempio concreto di confronto fra diverse stime del LOD è stato 
riportato a proposito della determinazione dell’antibiotico spiramicina 
mediante HPLC di ripartizione in fase inversa su colonna C8 con 
rivelazione UV (232 nm).

Confronto fra diversi metodi per la determinazione del LOD:
un esempio sperimentale (Analytical Chemistry, 1999, 71, 2672)



Sono state effettuate 6 misure replicate su 8 soluzioni di spiramicina a 
concentrazione variabile da 0 a 2.5 ppm.

Il LOD del metodo e’ stato valutato scegliendo in tutti i casi il criterio di 
Kaiser, ossia ad un r(S/N) = 3,  ma usando 5 approcci diversi:

 determinazione diretta del r(S/N) in funzione della concentrazione di 
spiramicina (S/N);

 determinazione con i minimi quadrati convenzionali (Ordinary Least 
Squares, OLS) usando sy/x;

 determinazione con i minimi quadrati convenzionali (Ordinary Least 
Squares, OLS) usando sy0;

 determinazione con i minimi quadrati pesati (Weighted Least Squares, 
WLS) usando sy/x;

 determinazione con i minimi quadrati pesati (Weighted Least Squares, 
WLS) usando sy0.



Come si può notare, sono stati ottenuti valori di LOD (espressi come 
percentuale della massima concentrazione adottata nella calibrazione, ossia 
di 2.5 ppm) diversi a seconda dei casi.

In ogni caso essi individuano l’ordine di grandezza della sensibilità del 
metodo (le diverse stime del LOD sono comprese fra 25 e 75 ppb).
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