
In chimica analitica strumentale la relazione esistente fra il segnale ottenuto e 
la concentrazione dell’analita che lo genera è solitamente lineare (almeno per un 
certo intervallo di concentrazione.

Detto Y il segnale, X la concentrazione 
ed ε l’errore associato alla misura di Y
si può quindi scrivere l’equazione:

Y = β0 + β1 X + ε

Dove β0 e β1 rappresentano i valori veri 
del modello che correla Y a X.

Dette b0 e b1, rispettivamente, le 
migliori stime di β0 e β1, ottenute da 
un metodo di interpolazione, i valori del
segnale predetti dal modello sono dati da:

     = b0 + b1 X

Regressione lineare semplice

Ŷ



Metodo dei minimi quadrati

Uno dei metodi più comuni per ricavare le stime b0 e b1 è il metodo dei 
minimi quadrati.
Siano date n coppie di valori sperimentali:
(x1,y1), (x2, y2), …, (xn, yn);

per la generica coppia di valori (xi,yi) risulta:

 yi = β0 + β1 xi + εi         mentre      = b0 + b1 xi 

L’approccio dei minimi quadrati ha per obiettivo determinare i valori di b0 
e b1 tali che la somma degli scarti quadratici fra i valori di yi e    sia 
minima.

I valori di b0 e b1 derivano quindi dalla soluzione delle equazioni:
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Risolvendo il sistema di equazioni si ottiene:

mentre:

Considerando la relazione fra b0 e b1, l’equazione della regressione lineare 
ottenibile con il metodo dei minimi quadrati si può esprimere come:

Nel caso del dato generico (xi,yi) l'equazione della regressione diventa:

sottraendo entrambi i membri dell'equazione dal valore yi si ottiene:
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il termine al primo membro viene definito 
residuo, ossia la differenza fra valore 
sperimentale della y e valore predetto dal 
modello a parità di concentrazione.

Sommando i residui su tutti i dati si ha:
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Per definizione di media entrambe le 
sommatorie al secondo membro sono nulle, 
ad esempio risulta:
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In definitiva: la sommatoria dei residui relativi ad una retta di regressione 
ottenuta con il metodo dei minimi quadrati è sempre nulla (il che significa che 
vi saranno sempre sia residui positivi che residui negativi, che alla fine si 
compenseranno).



Coefficiente di correlazione nella regressione lineare

Se si applica la definizione generale di coefficiente di correlazione al caso 
della regressione lineare si ottiene la relazione:
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Un'attenta analisi 
dell'equazione 
mostra che -1 ≤ r ≤ 1.

r = 1 ⇒ perfetta correlazione fra x e y
r =-1 ⇒ perfetta correlazione negativa fra x 
e y
r = 0 ⇒ nessuna correlazione lineare fra x e y

Le rette di taratura in chimica analitica 
forniscono frequentemente valori di r 
superiori a 0.99, mentre già valori inferiori a 
0.90 sono raramente ritenuti accettabili.



In altri contesti di ricerca, tuttavia, il coefficiente di correlazione può essere 
decisamente più basso rispetto ad 1 (in valore assoluto). Ciò accade spesso, ad 
esempio, quando si interpolano coppie di valori riferiti a grandezze di natura 
ambientale sulle quali incidono altre cause di variabilità oltre a quella che 
tende a farle aumentare o diminuire congiuntamente:

Bq = becquerel = attività di un radionuclide che ha un decadimento al secondo
AQI = Air Quality Index; RH = Room Humidity



Occorre fare attenzione al fatto che spesso valori apparentemente 
accettabili di r in realtà derivano da dati che non sono correlati 
linearmente (caso a):

D'altra parte un valore di r 
praticamente nullo (caso b) 
significa solo che x e y non sono 
linearmente correlate ma questo 
non significa che esse non siano 
correlate da una funzione di 
ordine superiore.

L’analisi della distribuzione dei 
residui lungo l’intervallo di 
variazione di x può aiutare a 
comprendere la situazione.



Il quartetto di Anscombe

Nel 1973 lo statistico 
F.J. Anscombe pubblicò 
un articolo in cui 
mostrava come quattro 
set di dati molto diversi 
fra loro conducessero 
alla stessa retta di 
regressione, con r = 
0.816:

E' quindi opportuno sempre rappresentare 
graficamente i dati prima di avanzare ipotesi 
sulla bontà della regressione lineare.



Precisione della regressione lineare

I dati indispensabili per stabilire la precisione della regressione lineare sono 
le incertezze che caratterizzano la pendenza e l'intercetta della retta di 
regressione.

Un parametro fondamentale per la loro valutazione è:
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ossia la deviazione standard sui residui della regressione.

Si può dimostrare che se il modello di regressione è valido questa grandezza 
è uno stimatore corretto della varianza associata ai dati sperimentali 
sottoposti alla regressione.

Le deviazioni standard sulla pendenza e sull'intercetta dipendono anche da 
sy/x:



Per l'espressione corretta dei valori di b0 e b1 occorre considerare il loro 
intervallo di fiducia e quindi usare:

 la distribuzione t di Student ad n-2 gradi di libertà e ad un certo livello di 
significatività α 

  i valori delle rispettive deviazioni standard:

b0 ± tn-2,1-α/2 × sb0                 b1 ± tn-2,1-α/2 × sb1

tipicamente si adotta α = 0.05 (95% di fiducia / 5% di significatività).

E’ importante notare che in questo caso le deviazioni standard su b0 e b1 
contengono già il contributo del termine contenente i gradi di libertà, perché 
presente al denominatore di sy/x, da cui esse dipendono linearmente. 
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Calcolo di una concentrazione a partire dal responso analitico

Dopo aver calcolato i parametri della retta di regressione è possibile risalire 
al valore di concentrazione x0 associato ad un segnale analitico y0:

x0 = (y0-b0)/b1

La deviazione standard associata a tale valore è data dall'equazione:
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nella quale compare anche il numero m degli eventuali replicati effettuati sul 
campione di cui si vuole valutare la concentrazione x0, mentre n rappresenta 
il numero complessivo dei dati impiegati per la regressione lineare.



E’ interessante evidenziare che l'intervallo 
di fiducia sulla concentrazione estrapolata 
può essere determinato graficamente, con 
buona approssimazione, usando le 
cosiddette bande di predizione (b.p.), come 
mostrato in figura.
Esse esprimono l’escursione stimata per il 
segnale y (entro un certo livello di fiducia) 
in corrispondenza di un dato valore di 
concentrazione e si avvicinano al massimo 
alla retta di interpolazione in 
corrispondenza del punto avente come 
coordinate le medie dei valori di y e di x.

A parità di tutte le altre condizioni 
l'intervallo di fiducia su x0 tende quindi ad 
aumentare quando più i valori di y0 
utilizzati si allontanano dalla media    :

Anche in questo caso occorre calcolare l'intervallo di fiducia sul valore di x0 
usando la distribuzione t di Student, con gradi di libertà n+m-3:

x0 ± tn+m-3,1-α/2 × sx0

y

y'0

x'0

y”0

x”0

b.p.
b.p.



Metodo dell’aggiunta standard

Quando è necessario misurare la concentrazione di un analita in una matrice 
molto complessa la calibrazione in solvente puro (calibrazione esterna) può 
portare a risultati di bassa accuratezza a causa dell’effetto matrice.

L’effetto matrice è quello che gli altri componenti della matrice possono 
esercitare sul responso di un analita, rendendolo significativamente diverso 
(per eccesso o per difetto) rispetto a quello ottenuto in solvente puro, a 
parità di concentrazione. 

In presenza di tale effetto si può procedere con il cosiddetto metodo 
dell'aggiunta standard.

Con tale metodo si misura il responso dell’analita direttamente in matrice, 
attraverso l’aggiunta a questa di opportuni volumi di uno standard 
concentrato dell’analita.

Di fatto si esegue una calibrazione in matrice ma, contestualmente, si può 
estrapolare il valore della concentrazione incognita dell’analita presente 
inizialmente nella matrice, attraverso un’opportuna interpolazione dei dati 
mediante la regressione lineare.



Si procede come segue:

 si prelevano più aliquote della 
soluzione da analizzare e le si 
suddividono in altrettanti 
contenitori;

 a ciascuna aliquota, tranne una 
(la 1) , si aggiunge un volume noto 
di una soluzione standard 
concentrata di analita, in modo 
da ottenere una concentrazione 
nota di analita aggiunto (che sarà 
0 nel primo caso);

 si porta a volume nei vari casi, si 
analizza ciascuna delle soluzioni, 
compresa quella senza aggiunta 
di analita, e si riporta in grafico 
il segnale in funzione della 
concentrazione aggiunta.



xE

L'intercetta sull'asse x (xE) della 
retta di interpolazione del segnale 
in funzione della concentrazione 
aggiunta fornisce la 
concentrazione di campione 
presente nella soluzione da 
analizzare purché il responso del 
bianco non sia diverso da zero.

Ciò è dimostrabile considerando la 
similitudine di triangoli rettangoli 
aventi in comune un angolo acuto, 
nel caso specifico i triangoli ACO e 
BCD.
Risulta:
AO = segnale dovuto alla 
concentrazione incognita xE

BD = segnale dovuto alla 
concentrazione incognita e a quella 
aggiunta, xE + xagg

OD = xagg
O

A

B

C
D



Dette b0 e b1 l’intercetta e la 
pendenza della retta di 
regressione ottenuta sui responsi 
misurati, si ha:

AO = b0 + b1 * xE
BD = b0 + b1*(xE + xagg)

In virtù della similitudine fra i due
triangoli rettangoli possiamo
scrivere la seguente proporzione:

O

A

B

C
D

AO : BD = CO : (CO+OD) ossia:

[b0 + b1 * xE] : [b0 + b1*(xE + xagg)] = CO : [CO + xagg] e quindi:

b0 CO + b0 xagg + b1 xE CO + b1 xE xagg = b0 CO + b1 xE CO + b1 xagg CO

Se risulta b0 ≈ 0 (ossia, se l’intervallo di fiducia di b0 include il valore zero), 
come nell’ipotesi iniziale, l’equazione diventa xE = CO, come volevasi dimostrare.



Come per x0 il calcolo dell’intervallo di fiducia per il valore di xE al livello di 
significatività α implica l'uso della distribuzione t di Student:

xE ± tn-2,1-α/2 × sxE

Anche in questo caso è possibile valutare l'errore sulla concentrazione xE. 
La formula è leggermente diversa da quella adottata per x0:
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n rappresenta il numero di dati complessivamente utilizzati per realizzare la 
retta di regressione.



Esempio di applicazione del metodo dell’aggiunta standard all’analisi dello 
stronzio presente nell’acqua di un acquario mediante spettroscopia atomica di 
assorbimento:

Si noti che in acqua pura 2 ppm di Sr determinano un’assorbanza di circa 0.06 
unità, mentre nell’acqua di acquario essa è inferiore a 0.04 unità, quindi 
l’effetto matrice si traduce in un decremento di responso di circa il 33%.



Criterio per la determinazione delle aggiunte di concentrazione ottimali
Nell’esempio precedente la prima aggiunta di stronzio alla matrice 
corrispondeva a 2 ppm, a fronte di una concentrazione dell’elemento nella 
matrice pari a 7.41 ppm, dunque era paragonabile a quest’ultima.
Laddove l’aggiunta sia eccessiva/bassa rispetto alla concentrazione iniziale in 
matrice, la retta di aggiunta standard che ne deriva è molto/poco pendente, 
come mostrato in figura:

L’intercetta sul semiasse negativo diventa quindi o molto vicina allo zero o molto 
grande, rispettivamente. In entrambi i casi l’errore sulla concentrazione 
ricavata è rilevante. E’ dunque opportuno effettuare una sola aggiunta 
inizialmente e, se essa non è ottimale, rifarla con un valore diverso.

Retta troppo 
pendente (l’aggiunta 
è eccessiva)

Retta poco 
pendente (l’aggiunta 
è troppo bassa)



Uso della regressione lineare per il confronto di metodi analitici

La regressione lineare con il metodo dei minimi quadrati può essere 
impiegata in modo molto efficace quando due metodi analitici vanno 
confrontati in un ampio intervallo di concentrazioni.

In tal caso si effettuano n coppie di misure con i due metodi e si riportano 
in grafico i valori ottenuti da uno dei due metodi (A) contro quelli derivanti 
dall'altro (B). Sono possibili 6 casi:

a) b0 = 0, b1 = 1, r ≈ 1:
 è il caso ideale, in cui i due 

metodi forniscono risultati 
identici;

b) b0 ≠ 0, b1 = 1, r ≈ 1: 
 il metodo A fornisce un risultato 

costantemente spostato verso 
valori maggiori rispetto al 
metodo B



d) b0 ≠ 0, b1 ≠1, r ≈ 1:
 è una combinazione dei casi b e c

e) esiste una deviazione dalla linearità 
per uno dei due metodi in un certo 
intervallo di concentrazione

f) i campioni contengono quantità 
variabili di due specie dell'analita, 
una delle quali non è rivelata 
affatto dal metodo A, mentre il 
metodo B è sensibile ad entrambe. 

 
In generale il confronto fra i due metodi si effettua calcolando gli 
intervalli di fiducia per la pendenza e l'intercetta della retta di 
regressione e verificando che i valori 1 e 0, rispettivamente, siano 
compresi in tali intervalli.

c) b0 = 0, b1 ≠1, r ≈ 1:
 il metodo B fornisce responsi 

proporzionalmente più elevati



Un esempio numerico

Si considerino i dati relativi alla concentrazione (µg/L) di piombo in 10 
succhi di frutta ottenuti con un'analisi di stripping potenziometrica 
(PSA) e con la spettroscopia atomica di assorbimento (AAS):

Campione AAS PSA

1 35 35
2 75 70
3 75 80
4 80 80
5 125 120
6 205 200
7 205 220
8 215 200
9 240 250
10 350 330



La retta di regressione ottenuta ha i parametri:

b0 = 3.87 b1 = 0.963 r = 0.9945

sy/x = 10.56 sb0 = 6.64 sb1= 0.0357

Considerando un livello di fiducia del 95% risulta t8,0.975 = 2.31  e quindi:

b0 = 4 ± 15 b1 = 0.96 ± 0.08

I risultati dei due metodi PSA e AAS si possono dunque ritenere non 
significativamente diversi al 95 % di fiducia.



Accorgimenti nell'applicazione del metodo dei minimi quadrati al 
confronto di due metodi analitici

Una delle assunzioni fondamentali per l'applicazione del metodo dei 
minimi quadrati è che l'errore che insiste sulla grandezza usata come x 
sia trascurabile.

Nel caso del confronto di metodi questa assunzione può non essere vera, 
perché anche i valori delle x derivano da misure sperimentali, tuttavia 
test pratici mostrano che l’approccio può essere applicato con successo 
purché:

 si riportino sull'asse x i dati derivanti dal metodo più preciso dei due 
(aspetto da valutare preliminarmente con un F-test sulle varianze)

 si usi un numero ragionevole di dati (almeno una decina) per il 
confronto, considerando che il calcolo degli intervalli di fiducia della 
pendenza e dell'intercetta si basa su n-2 gradi di libertà.

 i punti coprano nel modo più uniforme possibile l'intervallo di 
concentrazione d'interesse per il confronto.



Un'altra assunzione fondamentale del metodo dei minimi quadrati è che 
l'errore sulla grandezza y NON cambi con la concentrazione 
(omoschedasticità).

Questa condizione, valutabile con una serie di test sulle varianze 
osservate replicando la misura più volte a ciascuna delle concentrazioni 
coinvolte nella calibrazione, può non essere vera se si esplorano molti 
ordini di grandezza di concentrazione.

In tal caso occorre far uso della regressione lineare pesata.



La regressione lineare pesata va introdotta quando è evidente che l'errore 
che incide sui valori del segnale NON è indipendente dalla concentrazione 
(ossia cresce, o diminuisce, in modo significativo con essa). 

Regressione lineare pesata

Si supponga di:

 aver effettuato misure con un 
metodo analitico su nove campioni 
a diversa concentrazione

 
 di aver replicato un congruo 

numero di replicati per ciascuno 
di essi, ottenendo così un 
intervallo di fiducia del segnale per 
ogni concentrazione

 che l'intervallo di fiducia del 
responso cresca significativamente 
con la concentrazione:



Poiché è più importante che la retta di regressione passi più vicino ai 
punti con un'incertezza inferiore è opportuno dare ad essi un peso 
statistico maggiore rispetto agli altri.

Ciò è possibile usando come peso un valore inversamente proporzionale 
alla varianza si caratteristica per i vari punti. Di solito si usa come peso il 
valore (weight):
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per comodità i pesi wi sono scalati in modo che la loro somma sia n, il 
numero dei punti della retta.

Noti i vari wi si calcolano le medie pesate dei valori di x e y:
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In analogia con quanto accade con la regressione lineare non pesata si 
possono poi calcolare i parametri della regressione, b0 e b1:
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In questo caso le formule per il calcolo dell'incertezza su un valore di 
concentrazione x0 determinato a partire dal corrispondente segnale y0 
sono più complesse. La deviazione standard sui residui è data 
dall’equazione:
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dove w0 è il peso associato alla determinazione y0.

La valutazione di casi reali mostra che molto spesso l'uso della 
regressione lineare pesata al posto di quella convenzionale non modifica 
tanto il valore di x0 ma rende molto più realistico l'intervallo di fiducia 
associato ad esso.
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La deviazione standard sul valore di concentrazione estrapolato è data 
da:



Un esempio numerico

Si supponga di aver misurato l'assorbanza di sei soluzioni standard, 
effettuando per ciascuna più replicati ed ottenendo i valori:

Concentr., µg/L 0 2 4 6 8 10

Assorbanza 0.009 0.158 0.301 0.472 0.577 0.739
Deviazione Stand. 0.001 0.004 0.010 0.013 0.017 0.022

Se procediamo nel calcolo dei parametri della regressione con i due 
metodi otteniamo i valori:

regressione convenzionale  b0  = 0.0133  b1  = 0.0725

regressione pesata  b0w = 0.0091  b1w = 0.0738

La differenza fra i valori appare trascurabile, come confermerebbe la 
valutazione dei relativi intervalli di fiducia.



Assorbanza Intervallo di fiducia

 regr. conv. regr. pesata

0.1 1.2 ± 0.6 1.23 ± 0.12

0.6 8.1 ± 0.6 8.0 ± 0.7

La stima dell'intervallo di fiducia mediante 
la regressione lineare pesata è molto più 
realistica alle basse concentrazioni, ossia in 
prossimità del “baricentro” della retta.

Ciò si riflette nella diversa forma delle 
bande di predizione rispetto al caso della 
regressione lineare convenzionale.

b.p.

b.p.

La differenza fra i due metodi appare però evidente se si valuta l'intervallo 
di fiducia sui valori di concentrazione corrispondenti ad assorbanze 0.1 e 
0.6:

0.1

0.6

0.12

0.7
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