
t-test appaiato

Vi sono casi in cui il confronto fra i responsi di due metodi di analisi non 
può essere effettuato replicando più volte l’analisi con ciascun metodo su 
uno stesso campione, ad esempio quando:

 la quantità disponibile di campione è sufficiente solo per una 
determinazione con ciascuno dei due metodi perché sono disponibili 
soltanto piccole quantità di campioni provenienti da fonti diverse e/o 
contenenti quantità di analita leggermente diverse;

 i campioni per il confronto devono essere analizzati su un grande 
intervallo di tempo, per cui è difficile ottenere replicati affidabili.

In questo caso le eventuali differenze fra le medie ottenute dai due 
metodi possono essere mascherate da altri effetti, per cui non possono 
essere stimate con l’approccio dell’intervallo di fiducia.

Un test che consente di affrontare la problematica è il t-test appaiato.



 Si effettuano n misure accoppiate, una per ciascun campione analizzato 
con ciascuno dei due metodi

 si calcolano le differenze Di fra i dati di ciascuna coppia di misure

 nell’ipotesi che non vi sia una differenza statisticamente significativa 
fra i due metodi i valori Di saranno distribuiti intorno ad un valore medio 
0.

Si possono dunque mettere a confronto le seguenti ipotesi, detta µD la 
media di popolazione delle differenze fra i dati:

µD = 0 e µD ≠ 0

I valori delle differenze Di possono essere usati come quelli derivanti da 
un campione di dimensioni n (di solito n < 30).

La situazione è analoga a quella del confronto fra una media ed un valore 
noto (pari a 0) nel caso 3: popolazione distribuita normalmente, con 
varianza ignota ed n < 30.

La variabile da considerare è, quindi: t =              ∼ tn-1 



dove sD è la deviazione standard relativa alle differenze Di, ossia: 

Scelto un livello di significatività α, l’ipotesi µD = 0 viene rigettata se:

NOTA IMPORTANTE: Il t-test appaiato mantiene validità SOLTANTO 
se vale l’assunzione che l’errore sulle determinazioni messe a confronto 
non dipenda dalla concentrazione.

Se ciò non è vero il confronto fra i metodi va fatto con la regressione 
lineare, come verrà spiegato in seguito. 
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Esempio numerico di t-test appaiato

Le concentrazioni di glucosio in dieci campioni di plasma umano sono state 
determinate con i seguenti metodi analitici:

1) un test fotometrico-enzimatico di routine

2) un metodo di analisi per iniezione in flusso (FIA) basato sulla 
rivelazione amperometrica di H2O2 su un biosensore con glucosio 
ossidasi immobilizzata

I dati ottenuti (espressi in mg/100 mL) sono:

Campione Metodo 
fotometrico

Metodo
FIA

Di

1 75 70 +5
2 100 103 -3
3 82 83 -1
4 85 82 +3
5 93 94 -1
6 78 77 +1
7 80 83 -3
8 90 88 +2
9 84 86 -2
10 95 94 +1



Le ipotesi a confronto sono:   
    
µD = 0  
µD ≠ 0

Risulta inoltre:   n = 10                = 0.20           sD = 2.66

La realizzazione della statistica è:

t =               = 0.24 

Al 5% di significatività (1-α/2 = 0.975) risulta:

t0.975,9 = 2.26

Poiché t = 0.24 < 2.26 l’ipotesi µD = 0 può essere accettata e quindi i due 
metodi non differiscono in modo significativo fra di loro.
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In analogia con quanto visto per la media e la differenza fra medie, è 
possibile sottoporre a confronto anche una varianza con un valore noto o 
due varianze fra loro.

Test su una singola varianza

Supponiamo di avere a disposizione i seguenti dati

x1, x2, …, xn

estratti da una popolazione distribuita secondo N(µ, σ2).

Per una delle proprietà della distribuzione
χ2 vale la relazione:

Σi (Xi –   )2/σ2  =  (n-1)s2/σ2   ∼  χ2
n-1 

si può quindi effettuare il confronto 
fra una varianza ed un valore noto
usando la distribuzione chi-quadro. 

Test sulle varianze o loro differenze

X

χ2
3, 0.90

χ2
3, 0.10



Poiché la distribuzione χ2 non è simmetrica i criteri di rigetto dell’ipotesi 
di base (l’uguaglianza con un valore predefinito) sono diversi da quelli che 
riguardavano le distribuzioni normale e t di Student:

ipotesi a
confronto

distribuzione dei dati
tipo di test

criteri di rigetto 
dell’ipotesi di base

T = (n-1)s2/ σ0
2~ χ2

n-1   

una coda t ≥ χ2
n-1 (1-α)

una coda t ≤ χ2
n-1(α)

σ2 = σ0
2

σ2 > σ0
2

σ2 < σ0
2

σ2≠ σ0
2 due code t ≤ χ2

n-1 (α/2 )  oppure
t ≥ χ2

n-1 (1-α/2) 

Test su una varianza: esempio numerico

Siano dati i seguenti numeri, ottenuti da un programma che genera numeri 
random:

+0.250  +1.620  -0.052      +0.014  -0.366 
+0.756  +0.608  -2.150      +1.162

Si vuole verificare se la varianza sia o meno uguale a 1.



In questo caso:

n = 9
s2 = 1.17
σ0

2 = 1

La realizzazione della statistica per il test della varianza (a due code) è:

t = (n-1)s2/σ0
2 = 9.36

Se si adotta un livello di significatività del 5 %, risulta:

χ2
n-1 (α/2) = χ2

8 (0.025) = 2.180    e

χ2
n-1 (1-α/2) = χ2

8 (0.975) = 17.535

Poiché 2.180 < t < 17.535 possiamo accettare l’ipotesi di base e quindi 
affermare che la varianza della popolazione dei numeri random non è 
significativamente diversa da 1.



Test su due varianze (F test)

Supponiamo di avere a disposizione le seguenti serie di dati:

x1, x2, …, xn1  y1, y2, …, yn2

derivanti da popolazioni distribuite normalmente:

x ∼ N(µ1, σ1
2)  e   y ∼ N(µ2, σ2

2)

Può essere necessario stabilire su base statistica se le due varianze di 
popolazione siano significativamente diverse l’una dall’altra.

Ad esempio se le due serie di dati derivano dall’applicazione di metodi 
analitici diversi il confronto consente di stabilire se uno dei metodi è più 
preciso dell’altro o se essi sono equivalenti, in termini di precisione.

Per il test si può sfruttare la proprietà della distribuzione F:

(s1
2/ σ1

2)/(s2
2/ σ2

2) ∼ Fn1-1, n2-1



I criteri di rigetto dell’ipotesi di base, ossia dell’uguaglianza fra le due 
varianze, sono, a seconda dei casi: 

ipotesi a
confronto

distribuzione dei dati
tipo di test

criteri di rigetto 
dell’ipotesi di base

σ1
2 = σ2

2 T = snum
2 /sden

2 ~ Fνnum , νden

σ1
2 > σ2

2 una coda t ≥ Fνnum νden (1-α )
σ1

2 < σ2
2 una coda t ≥ Fν num νden

σ1
2 ≠ σ2

2 due code t Fν num,νden≥
,
,

(1-α )
(1-α/2 )

Se σ1
2 = σ2

2 risulta:  T = (s1
2/s2

2) ∼ Fn1-1,n2-1

Per comodità si calcola la realizzazione di T in modo che al numeratore ci 
sia sempre la varianza campionaria più grande fra le due a confronto.

νnum e νden sono i gradi di libertà associati alle serie di dati a cui 
corrispondono rispettivamente la varianza al numeratore e quella al 
denominatore del rapporto T 

Si noti che il tipo di disequazione finale è sempre lo stesso proprio per il 
modo in cui viene calcolata la variabile sotto test.



F test: esempio numerico

Supponiamo di avere a disposizione i seguenti set di dati, derivanti 
dall’applicazione di due diversi metodi analitici allo stesso campione:

Si vuole verificare se esista una differenza significativa fra la 
precisione dei due metodi, e quindi fra le varianze delle due popolazioni.

Il test da utilizzare è tipicamente a due code, in questo caso.

Dato Metodo A Metodo B
1 5.11 5.18
2 5.14 5.13
3 5.13 5.27
4 5.17 5.12
5 5.12 5.27
6 5.08 5.29
7 5.15 5.17
8 5.20 5.28
9 5.16 5.14
10 5.14 5.18

Metodo   A
   = 5.140
s1

2 = 11.11 × 10-4

n1  = 10

Metodo B
    = 5.203
s2

2 = 45.34 × 10-4

n2  = 10

X

Y



Poiché la varianza campionaria più grande è quella derivante dal metodo B la 
realizzazione della statistica per l’F-test è:

t = 45.34/11.11 = 4.08.

Se si adotta un livello di significatività del 5% (e quindi 1-α/2 = 0.975) il 
valore critico è:

F9,9 (0.975) = 4.03

Poiché t = 4.08 > 4.03 l’ipotesi di base è rigettata, quindi le due varianze sono 
significativamente diverse l’una dall’altra.

In particolare il metodo B ha una varianza maggiore, quindi è meno preciso 
del metodo A.



Test per l’eliminazione dei dati aberranti

In termini statistici un dato aberrante (outlier) è un dato che appare 
chiaramente diverso dagli altri ottenuti da una serie di misure replicate.
Ad esempio può essere stato generato da un errore grossolano nella 
procedura di misura o da una fluttuazione accidentale nel segnale fornito 
dalla strumentazione.

Poiché eliminare un outlier prima di effettuare ulteriori calcoli sui dati a cui 
esso appartiene (ad esempio quelli dei parametri campionari) o test (come il 
test d'ipotesi) può avere conseguenze anche notevoli sull'esito di tali 
operazioni, è necessario effettuare dei test che giustifichino tale decisione.

Q-test  di Dixon

Il Q-test di Dixon è uno dei possibili test per l’eliminazione dei dati 
aberranti e si basa sul confronto della differenza fra il valore sospetto e 
quello ad esso più vicino nella serie di dati con l'intero campo di variazione 
dei dati stessi. L'assunzione è che i dati siano distribuiti normalmente.
Si calcola la seguente statistica:

Q = valore sospetto-valore più vicino/(valore massimo-valore minimo)



La realizzazione di Q, q, viene confrontata con un valore critico al livello di 
fiducia desiderato, di solito 95%.

Se q > valore critico ⇒ il dato può essere rigettato

Se q < valore critico ⇒ il dato va conservato nella serie

Dimensioni del 
campione (n)

Valore critico
a P = 0.95

4 0.831
5 0.717
6 0.621
7 0.570
8 0.524
9 0.492
10 0.464

Esempio numerico

Supponiamo di avere a disposizione i seguenti 4 dati di volume di titolante 
aggiunto al punto equivalente in una titolazione:

20.85 20.80 20.95 21.35



Si sospetta che l'ultimo dato sia un outlier.

La realizzazione di Q è:

q = (21.35-20.95)/(21.35-20.80) = 0.727

Per n = 4, al 95% di fiducia, il valore critico di Q è 0.831; 

poiché 0.727 < 0.831 il dato 21.35 va conservato nella serie.

Supponiamo ora di aggiungere altri dati alla serie, effettuando tre nuove 
misure:

20.85 20.80 20.95 21.35 20.70 20.90 20.82

Il nuovo valore della realizzazione di Q è dato da:

q = (21.35-20.95)/(21.35-20.70) = 0.615

Per n = 7, al 95% di fiducia, il valore critico di Q è 0.570;

poiché 0.615 > 0.570 il dato 21.35 va eliminato dalla serie.



E' evidente che un numero maggiore di misure consente di prendere la 
decisione sull'outlier in modo più appropriato.

Va sottolineata la differenza fra i parametri campionari prima e dopo 
l'eliminazione dell'outlier:

   passa da 20.91 a 20.84, ma soprattutto s passa da 0.21 a 0.09! 

Va sottolineato che il test finora descritto è efficace nel caso in cui sia 
presente un solo dato sospetto nella serie, ad un’estremità o all’altra.

Se sono presenti due o più dati anomali in corrispondenza della stessa 
estremità della serie occorre applicare delle varianti del test, che prevedono 
l’esclusione dai calcoli dei dati più esterni, ad una o ad entrambe le estremità 
del campo di variazione.

X



Test chi-quadro

Il test chi-quadro fa parte dei cosiddetti goodness of fit test, ossia test 
che verificano quanto una particolare funzione descriva la distribuzione delle 
frequenze relativa ad una serie di dati ottenuti sperimentalmente.

Si tratta di un test che, in generale, confronta le funzioni di distribuzione 
sperimentale e teorica.

La statistica da considerare per il test è:

k è il numero complessivo delle classi di frequenza in cui i dati grezzi 
vengono preliminarmente divisi

Oi sono le frequenze osservate (O = observed) per le varie classi

Ei   sono le frequenze previste (E = expected) se fosse valida la funzione F(x) 
sotto test.

T =



Purché:

 il numero complessivo di dati, N, sia sufficientemente elevato (N > 50) 

 la frequenza minima in una classe sia 5

risulta:

T ∼ χ2
ν

dove ν = k-1-h, con h = numero dei parametri che caratterizzano la funzione 
di distribuzione sottoposta al test.

Scelto un livello di significatività α, si determina un valore critico  χ2
ν (1−α)

Se la realizzazione della statistica T, t, è inferiore al valore critico l'ipotesi 
secondo cui la funzione di distribuzione presa in esame descriva i dati 
sperimentali può essere accettata. 



Esempio numerico 1

Riconsideriamo i 65 dati (espressi in kJ/mole) di uno dei set di misure del ∆H 
di neutralizzazione dell'HCl con NaOH.

L’ipotesi più semplice che si possa avanzare è che i dati siano distribuiti 
normalmente.

Per la media e la varianza da usare nell'espressione della distribuzione 
normale N(µ,σ2) si possono considerare i rispettivi valori campionari:

µ ⇒      = 57.32         e σ2  ⇒  s2 = 2.731X



Raggruppiamo i dati sperimentali in 9 classi, ciascuna di ampiezza unitaria: 

Come si può notare, ci sono quattro 
classi con una frequenza inferiore a 
5, per cui occorre raggruppare 
diversamente i dati sperimentali 
per poter applicare il test chi-
quadro. 

classe intervallo frequenze 
osservate Oi

1 53.05- 54.05 1
2 54.05- 55.05 4
3 55.05- 56.05 11
4 56.05- 57.05 11
5 57.05- 58.05 19
6 58.05- 59.05 8
7 59.05- 60.05 8
8 60.05- 61.05 2
9 61.05 - 62.05 1

classe intervallo Oi Ei Oi
2 / Ei

1 -∞ ¸ 55.05 5 5.51 4.54
2 55.05 ̧ 56.05 11 8.87 13.64
3 56.05 ̧ 57.05 11 13.91 8.70
4 57.05 ̧ 58.05 19 15.31 23.58
5 58.05 ̧ 59.05 8 11.81 5.41
6 59.05 ̧ + 11 9.59 12.62∞

Occorre quindi scegliere gli intervalli delle classi in modo diverso (si noti che 
le ampiezze degli intervalli non devono essere necessariamente uguali):



I valori di Ei sono stati ottenuti standardizzando i valori limite delle diverse 
classi in modo da trasformarli in valori z per la distribuzione normale 
standard.

Detto a il valore di uno degli estremi delle classi il corrispondente valore z è 
dato da :

z = 2.731
57.32a −

-3

Ad esempio per la classe 55.05 ÷ 56.05 
i valori di z corrispondenti sono -1.374 
e -0.768, per cui il valore di Ei della 
classe si ricava dalla funzione di 
distribuzione normale standardizzata 
F(z):

E(55.05 ÷ 56.05) = [F(-0.768) - F(-1.374)] 
× N = 0.1365 × 65 = 8.87



Per il calcolo della realizzazione della statistica T possono essere impiegati i 
valori Oi

2/Ei in virtù della seguente serie di eguaglianze:

l’ultima deriva dalla considerazione che sia           che            sono uguali ad 
N. 

Calcolando dunque la somma dei termini Oi
2/Ei si può risalire alla 

realizzazione della statistica T: 

Il valore critico con cui confrontare tale realizzazione si ottiene dalla 
distribuzione chi-quadro a ν = k-1-h = 6-1-2 = 3, poiché i parametri (h) che 
caratterizzano la distribuzione normale sono 2 (media e varianza). 
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Ad un livello di significatività del 5% risulta 1-α = 0.95 e quindi:

χ2
ν (1−α) = χ2

3 (0.95) = 7.81

Essendo t = 3.50 < 7.81 l'ipotesi di base può essere accettata, il che significa 
che i dati di ∆H sono effettivamente distribuiti in modo normale. 



Esempio numerico 2

Supponiamo di considerare il numero di pezzi di vetreria rotti da quattro 
operatori di laboratorio in un determinato periodo di tempo:

24 17 11 9

e di voler verificare in modo statistico se c’e’ una differenza nella loro 
affidabilità.

L’ipotesi di base del test è che gli operatori non differiscano in affidabilità.

Esso si può effettuare considerando il confronto fra la distribuzione reale 
dei pezzi rotti dai quattro operatori e quella ipotetica sotto l’ipotesi di base, 
corrispondente al caso in cui ciascuno dei quattro operatori avesse rotto lo 
stesso numero di pezzi di vetreria, ossia (24+17+11+9)/4 = 15.25

In questo caso il raggruppamento dei dati è: classe Oi Ei Oi
2 / E i

1 24 15.25 37.77
2 17 15.25 18.95
3 11 15.25 7.93
4 9 15.25 5.31



Il valore della realizzazione della statistica da usare nel test è:

Il numero di gradi di libertà da adottare è:  ν = k-1-h = 4-1-0 = 3 perché la 
distribuzione teorica scelta non dipende da parametri. 

Ad un livello di significatività del 5% risulta 1-α = 0.95 e quindi:

χ2
ν (1−α) = χ2

3 (0.95) = 7.81

Poiché t = 8.96 > 7.81 l’ipotesi H0 è rigettata, il che significa che c’è una 
differenza significativa nell’affidabilità degli operatori, come prevedibile 
considerando il dato relativo al primo operatore.

t =               - N = 69.96 - 61 = 8.96 ∑
=

k

1i i

2
i

E
O



Per verificare ciò su base statistica il test può essere ripetuto limitando la 
considerazione agli altri tre operatori. 

In questo caso N = 37, k = 3 ed Ei = 37/3 = 12.33:

Il valore critico da usare in questo
nuovo test è: 

Il numero di gradi di libertà da adottare è:  ν = k-1-h = 3-1-0 = 2 

Ad un livello di significatività del 5 % risulta:

χ2
ν (1−α) = χ2

2 (0.95) = 5.99

Poiché t = 2.82 < 5.99 si conferma che, su base statistica, non c’è differenza 
significativa fra i restanti tre operatori, il che vuol dire che la variabilità 
comunque esistente fra loro è compatibile con quella accettabile.

classe Oi Ei Oi
2 / E i

2 17 12.33 23.44
3 11 12.33 9.81
4 9 12.33 6.57

t =               - N = 39.82 – 37 = 2.82 ∑
=

k

1i i
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Test di Kolmogorov - Smirnov

Il test di Kolmogorov-Smirnov rappresenta un altro approccio alla risoluzione 
del problema statistico della goodness of fit; rispetto al test chi-quadro ha 
il vantaggio di poter essere applicato anche a set di dati più piccoli (N < 50) e 
di essere efficace su variabili continue.

Il test si basa sul confronto fra una particolare spezzata disegnata sulla 
base delle frequenze cumulative calcolate con i dati sperimentali e la 
spezzata o la curva di distribuzione previste teoricamente.
Nel caso specifico non è richiesta la suddivisione in classi dei dati grezzi: 
ogni dato ottenuto può rappresentare una classe.

Il test può essere effettuato in due modi:

test ad una coda) si considera la massima differenza positiva fra la curva 
delle frequenze cumulative sperimentali e quella teorica o viceversa;

test a due code) si considera il massimo dei valori assoluti delle differenze 
fra la curva delle frequenze cumulative sperimentali e quella teorica;

I valori ora indicati vengono confrontati con un valore critico, diverso a 
seconda della modalità del test e della funzione di distribuzione usata.



Test di Kolmogorov-Smirnov per la casualità: un esempio numerico

Supponiamo di aver annotato su un certo intervallo di tempo le ultime cifre 
registrate da un tecnico di laboratorio nel fare letture con una buretta, ad 
esempio nel valutare il volume di titolante aggiunto in titolazioni relative a 
soluzioni diverse fra loro.

La distribuzione delle cifre su 50 letture è la seguente:

Cifra: 0 1 2 3 4 5 6 7 8 9
Frequenza: 1 6 4 5 3      11 2 8 3 7

Ci chiediamo se le letture siano effettivamente distribuite in modo casuale.

Il test ha lo scopo di valutare se l’operatore prediliga indicare un particolare 
numero, laddove sia in dubbio, come ultima cifra.

Naturalmente la valutazione è possibile soltanto se le 50 titolazioni da cui 
derivano le letture sono totalmente indipendenti una dall’altra.



Usando le frequenze cumulative relative, i valori sperimentali per il test 
sono:

Cifra: 0  1  2  3  4  5
Frequenza: 0.02  0.14  0.22  0.32  0.38        0.6
      
Cifra: 6  7  8  9
Frequenza: 0.64  0.80  0.86  1.00 

D’altra parte i valori teorici, in caso di distribuzione effettivamente casuale, 
sarebbero: 0.1, 0.2, …, 0.9, 1.

A = distribuzione random
B=  distribuzione sperimentaleDal confronto delle frequenze 

cumulative relative si nota che:

 la massima differenza si 
verifica per la cifra 4 ed è pari 
a 0.12

 non ci sono differenze negative 
(al minimo sono pari a 0, per le 
cifre 5 e 7).



Applicando il test a due code il valore da testare è 0.12 e va confrontato con 
quello critico per la casualità con N = 50, ossia 0.188.

Poiché 0.12 < 0.188 si può dire che la distribuzione delle frequenze delle 
cifre finali nelle letture sia effettivamente random.

Le condizioni del problema sono tali da consentire anche l’applicazione del 
test chi-quadro, che porta allo stesso risultato.



Test di Kolmogorov-Smirnov per la normalità

Prima dell’applicazione del test di Kolmogorov-Smirnov per la verifica della 
normalità di una distribuzione è necessario trasformare i dati iniziali in valori 
della variabile normale standard z:

Z = (x-µ)/ σ

dove µ e σ sono la media e la varianza:

 di popolazione, se si vuole fare il confronto con una particolare 
distribuzione gaussiana, di cui si conoscono media e varianza;

 campionarie, ossia ricavate dai dati a disposizione, se interessa solo 
stabilire se i dati siano distribuiti secondo una gaussiana. 



Esempio numerico

Sono state effettuate otto titolazioni della stessa soluzione, ottenendo i 
seguenti risultati:

25.13 25.02 25.11 25.07 
25.03 24.97 25.14 25.09

Ci si chiede se:

1) i dati siano distribuiti secondo una distribuzione normale con media 
25.00 mL e deviazione standard 0.05 mL; 

oppure se:

2) i dati siano distribuiti secondo una distribuzione normale. 



Caso 1

Essendo µ = 25 e σ = 0.05, i valori di z corrispondenti agli otto dati sono:

2.6 0.4 2.2 1.4 0.6 -0.6 2.8 1.8

Essi possono essere inseriti nel grafico delle frequenze cumulative relative 
considerando che la frequenza relativa di ciascuno è 1/8 = 0.125.

Nello stesso grafico si può inserire la curva continua delle frequenze cumulative 
relative per la distribuzione N(0,1):

La massima differenza si registra in 
prossimità del dato 1.4 ed è pari a 
0.545. Non ci sono differenze 
negative.
Il valore critico al 5 % di 
significatività, e con n = 8, si ricava 
dalle tavole apposite del test di 
Kolmogorov (a due code) per la 
normalità ed è pari a  0.288. 
Poiché 0.545 > 0.288 l’ipotesi 1 va 
rigettata.



Caso 2

In questo caso si devono stimare i parametri campionari relativi ai dati a 
disposizione:

    = 25.07    e   s = 0.059

I valori di z si ricaveranno quindi dalla relazione:

z = (x-25.07)/0.059

e sono:

1.02  -0.85  0.68  0 
-0.68  -1.69  1.19  0.34 

X



Inserendo questi dati nel grafico contenente la curva derivante da N(0,1) si 
nota che la massima differenza fra essa e la distribuzione sperimentale è 
0.125. Essa è maggiore del valore assoluto della massima differenza negativa.

Essendo 0.125 < 0.288 l’ipotesi che i dati delle titolazioni siano distribuiti 
normalmente può essere accettata al 5 % di significatività.

In questa situazione la media e la deviazione standard campionarie sono le 
stime migliori per i rispettivi parametri di popolazione.
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